Improved Measurement Modeling and Regression with Latent Variables

Karen Bandeen-Roche Department of Biostatistics Johns Hopkins University

Department of Biostatistics and Computational Biology University of Rochester April 3, 2008

Acknowledgements

- <u>Co-authors for Part I</u>: Howard Chilcoat, Naomi Breslau
- <u>Co-authors for Part II</u>: Janne Petersen, Klaus Larsen
- <u>Co-authors for Part III</u>: Jeannie-Marie Leoutsakos, Jing Ning
- <u>Thanks for data and collaboration</u>: Sheila West, Linda Fried
- <u>Funding</u>: National Inst. on Aging, National Inst. of Mental Health, Johns Hopkins Older Americans Independence Center

- Observed variables (i=1,...,n): Y_i =M-variate; x_i =P-variate
- Focus: response (Y) distribution = $G_{Y|x}(y|x)$; x-dependence
- Modeling issue: flexible or theory-based? — Flexible: $g_m(E[Y_{im}|x_i]) = f_m(x_i), m=1,...,M$

- Theory-based: > Y_i generated from <u>latent</u> (underlying) U_i : $F_{Y|U,x}(y|U=u,x;\pi)$ (Measurement)

> Focus on distribution, regression re U_i : $F_{U|x}(u|x;\beta)$ (Structural)

> Overall, hierarchical, model:

 $F_{Y|x}(y|x) = \int F_{Y|U,x}(y|U=u,x)dF_{U|x}(u|x)$

Motivation

The Debate over Mixture and Latent Variable Models

- In favor: they
 - acknowledge **measurement problems:** errors, differential reporting
 - summarize multiple measures parsimoniously
 - operationalize **theory**
 - describe population **heterogeneity**
- Against: their
 - modeling assumptions may determine scientific conclusions
 - interpretation may be ambiguous
 - > nature of latent variables?
 - > comparable fit of very different models
 - > seeing is believing

Possible Approaches to the Debate

- Argue advantages of favorite method
- <u>Hybrid approaches</u>:
 - Parallel analyses (e.g. Bandeen-Roche et al. AJE 1999)
 - Marginal mean + LV-based association (e.g. *Heagerty, Biometrics, 2001*)
- Sensitivity analyses
- "Popperian"
 - Pose parsimonious model
 - Learn how it fails to describe the world

• Modeling and estimation framework

• Specifying the target of estimation

Supposing that the target uniquely exists ...
Strategy for delineating it
Validity of the strategy

- Application: Post-traumatic Stress Disorder
- Development and subsequent use of latent variable "indices"

— Application: Functioning and vision in older adults

• Refocusing: Methodology to counterbalance competing assumptions

Application: Post-traumatic Stress Disorder Ascertainment

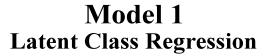
• PTSD

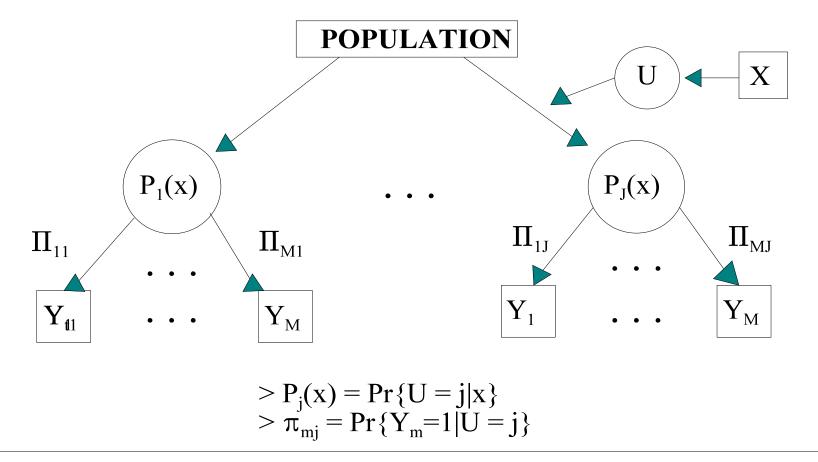
— Follows a qualifying traumatic event

> This study: <u>personal assault</u>, <u>other personal injury/trauma</u>, <u>trauma to loved one</u>, <u>sudden death of loved one</u> = "x", along with gender

— Criterion endorsement of symptoms related to the event ⇒ diagnosis > Binary report on 17 symptoms = "Y"

- A recent study (Chilcoat & Breslau, Arch Gen Psych, 1998)
 - Telephone interview in metropolitan Detroit
 - n=1827 with a qualifying event
 - Analytic issues
 - > Nosology
 - > Does diagnosis differ by trauma type or gender?
 - > Are female assault victims particularly at risk?





<u>References</u>: Dayton & Macready 1988, van der Heidjen et al., 1996; Bandeen-Roche et al., 1997

Latent Class Regression (LCR) Model

$f_{Y|x}(y|x) = \sum_{j=1}^{J} P_{j}(x,\beta) \prod_{m=1}^{M} \pi_{mj}^{y_{m}} (1-\pi_{mj})^{1-y_{m}}$

- Measurement assumptions : [Y_i|U_i]
 - conditional independence

• Model:

- nondifferential measurement

> reporting heterogeneity unrelated to measured, unmeasured characteristics

- Fitting: ML w EM; robust variance (e.g. Muthén & Muthén 1998, M-Plus)
- *Posterior* latent outcome info: $Pr\{U_i=j|Y_i,x_i;\theta=(\pi,\beta)\}$

Methodology Delineating the Target of Measurement

- Fit an initial model: ML, Bayes, etc.
- Obtain *posterior* latent outcome info e.g. $f_{U|Y,x}(u|Y,x;\theta)$ — This talk: empirical Bayes
- RANDOMLY generate "empirical LVs," V_i , according to $f_{U|Y,x}(u|Y,x;\hat{\theta})$
- Analyze $V_i AS U_i$ (accounting for variability in first-stage estimation)
- Estimate measurement structure through empirical analysis of $Y_i | V_i, x_i$

Methodology Properties "whatever" the True Distribution

• Under Huber (1967)-like conditions:

— <u>Asymptotically</u>:

- > Randomization imposes limiting hierarchical model, except [Y|V,x] arbitrary (and specifiable)
 - i.e. underlying variable distribution has an estimable interpretation even if assumptions are violated
- > No bias in substituting V_i for U_i.
 - i.e. regression of V_i on x_i and model-based LV regression eventually equivalent

Methodology More formal statement

• Under Huber (1967)-like conditions:

 $-(\hat{\beta}, \hat{\pi})$ converge in probability to limits (β^*, π^*) .

 $-Y_i$ asymptotically equivalent in distribution to Y^* , generated as:

i) Generate U_i^* — distribution determined by (β^*, π^*) , $G_{Y|x}(y|x)$;

ii) Generate Y^{*}—distribution determined by (β^*, π^*) , $G_{Y|x}(y|x)$, U_i^*

- $\{ \Pr[Y_i \le y | V_i, x_i], i=1,2,... \} \text{ converges in distribution to } \\ \{ \Pr[Y_i^* \le y | U_i^*, x_i], i=1,2,... \}, \text{ for each supported } y.$
- V_i converges in distribution to U_i^* .

PTSD Study: Descriptive Statistics

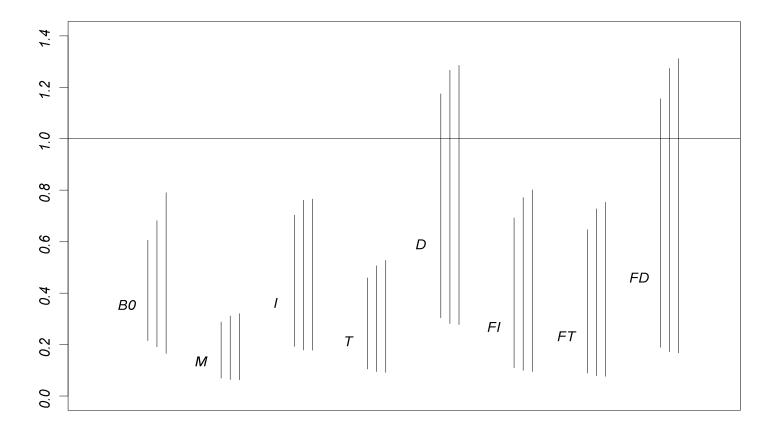
Gender	Trauma Ty	n			
	Personal Assault	Other Injury	Trauma to loved one	Sudden death	
Male	14.2	37.7	26.9	21.3	964
Female	14.3	26.3	32.2	27.2	863
Total	14.2	32.3	29.4	24.1	1827

- PTSD symptom criteria met: 11.8% (n=215)
 - By gender:8.3% of men, 15.6% of women— By trauma:assault (26.9%), sudden death (14.8%),
other injury (8.1%), trauma to loved one (6.0%)
 - -<u>Interactions</u>: female x assault (\uparrow), female x other (\downarrow)
 - <u>Criterion issue</u>? 60% reported symptoms short of diagnosis

Latent Class Model for PTSD: 9 items

SYMPTOM	SYMPTOM	SYMPTOM PROBABILITY (π)			
CLASS	(prevalence)		Class 2 - SOME SYMPTOMS	Class 3 - PTSD	
RE-	Recurrent thoughts (.49)	.20	.74	.96	
EXPERIENCE	Distress to event cues (.42)	.12	.68	.88	
	Reactivity to cues (.31)	.05	.51	.77	
AVOIDANCE/	Avoid related thoughts (.28)	.08	.37	.75	
NUMBING	Avoid activities (.24)	.05	.34	.66	
	Detachment (.15)	.01	.14	.64	
INCREASED	Difficulty sleeping (.19)	.02	.18	.78	
AROUSAL	Irritability (.21)	.02	.22	.83	
	Difficulty concentrating (.25)	.03	.30	.89	
MEAN PREVAL	LENCE-BASELINE	.52	.33	.14	

[Omitted: nightmares, flashback; amnesia, *interest*, *iaffect*, short future; hypervigilance, startle]

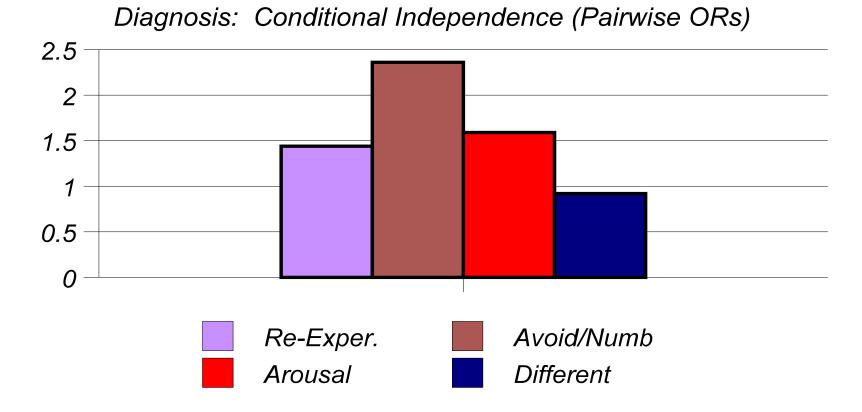


Odds and Relative Odds, with 95% Confidence Intervals

PTSD: DIAGNOSIS, LCR MEASUREMENT MODEL

• <u>Method</u>: Regress item responses on covariates "controlling" for class — For simplicity: non-assaultive traumas merged into "other trauma"

Variable	Odds Ratio or Interaction Ratio (CI)	By-item Odds Ratio MODEL 2
Female	1.07 (0.93,1.22)	1.07 (0.93,1.22)
Trauma =other than assault (recur.)	3.19 (1.89,5.40)	3.19 (1.89,5.40)
Cue distress x other trauma	0.18 (0.09,0.38)	0.58 (0.36,0.92)
Cue reactivity x other trauma	0.14 (0.07,0.28)	0.44 (0.27,0.72)
Avoid thoughts x other trauma	0.21 (0.11,0.41)	0.68 (0.44,1.05)
Avoid activities x other trauma	0.11 (0.05,0.22)	0.35 (0.21,0.58)
Detachment x other trauma	0.27 (0.13,0.58)	0.88 (0.51,1.49)
Difficulty sleep x other trauma	0.43 (0.21,0.90)	1.37 (0.78,2.42)
Irritability x other trauma	0.28 (0.13,0.61)	0.91 (0.52,1.59)
Concentration x other trauma	0.73 (0.36,1.47)	2.33 (1.35,4.03)



Re-Exper.	1.44
Avoid/Numb	2.36
Arousal	1.59
Different	0.92

Summary PTSD Analysis

- The analysis hypothesizes that PTSD is
 - a syndrome comprising <u>unaffected</u>, <u>subclinically affected</u>, and <u>diseased</u> subpopulations of those suffering traumas

— reported homogeneously within subpopulations

- The hypotheses are consistent with current diagnostic criteria
- <u>Gender x type interactions</u>: are strongly indicated

— Female assault victims at particular risk

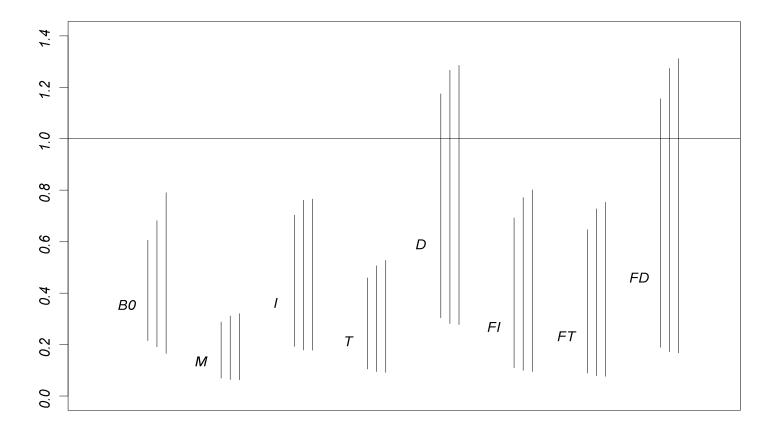
— ... given the subpopulations defined by the model

Summary PTSD Analysis

• Symptoms appeared differentially sensitive to different traumas

<u>Within classes</u>: those who had a non-assaultive trauma were

- less prone to report <u>distress to cues</u>, <u>reactivity to cues</u>, <u>avoiding</u> <u>thoughts</u>, & <u>avoiding activities</u>
- more prone to report recurrent thoughts & difficulty concentrating
- <u>Concern</u>: Current criteria may better detect psychiatric sequelae to assault than to traumas other than assault



Odds and Relative Odds, with 95% Confidence Intervals

Latent Variable Scaling A Three-Stage Approach

• <u>Step 1</u>: Fit full latent variable measurement model $\Rightarrow \hat{\pi}$

— For now: Non-differential measurement

- <u>Step 2</u>: Obtain predictions O_i given $\hat{\pi}$, Y_i
- <u>Step 3</u>: Obtain $\hat{\boldsymbol{\beta}}$ via regression of O_i on x_i
- <u>Step 4 (rare)</u>: Fix inferences to account for uncertainty in $\hat{\pi}$

Latent Variable Scaling (obtaining O_i) What do we know?

- **Predominant work:** Latent Factor models
 - U ~ Normal; $[Y|U] \sim \pi U + \epsilon, \epsilon \sim N(0, \Sigma)$
 - Three scaling methods

> Ad hoc

> **Posterior mean**: O_i as $E[U_i|O_i, \hat{\pi}]$

> "Bartlett" method: Weighted least squares, U_i "fixed"

 $Y_i = \hat{\pi} U_i + \epsilon_i, \ \epsilon_i \sim N(0, \hat{\Sigma}); O_i \text{ as WLS model fit for } U_i$

— In Step 3, Bartlett scores yield consistent $\hat{\beta}$; others don't

Latent Variable Scaling (obtaining O_i) What do we know?

- Latent Class models
 - Two scaling methods
 - > Posterior class assignment
 - Modal or as "pseudo-class": single or multiple

> Posterior probability estimates:

 $h_i = f_{U|Y}(u|Y; \hat{\pi}); O_i = h_i (logit link) or logit(h_i) or weighted$

— In Step 3, all are biased for $\hat{\beta}$

— A correction: Croon, *Lat Var & Lat Struct Mod*, 2002 Bolck et al., *Political Analysis*, 2004

Latent Variable Scaling (obtaining O_i) A new proposal

• Motivation: Bartlett method

— [Y|U] ~ product Bernoulli, $p = \pi S(U)$

> Y, p: Mx1 vectors (**outcomes**)

> π : MxJ matrix of conditional probabilities (design matrix)

> S(U): Jx1 vector with jth element = $1{U=j}$ ("coeffs")

— Proposed **Step 2**: GLM of Y_i on $\hat{\pi}$ with **linear** link, Bernoulli family; $O_i = \hat{S}_i$

— ML for GLM can be written as IRWLS — A shortcut: $O_i = \hat{S}_i$ via ordinary least squares; COP score

Simulation Study

• Basic template: 2 classes; $\pi = \begin{pmatrix} \tau & 1 - \tau \\ & \vdots \\ \tau & 1 - \tau \end{pmatrix}$

—2 measurement scenarios: "Precise"– τ =0.10; "**Imprecise**"– τ =0.30

• n=500, 1000

- 2 covariates; $\beta_0 = 0$; $\beta_1 = \beta_2 = 0.5$
- Lots of secondary simulations to compare COP scores, full LV

COP Scoring Theory

• Proposed **Step 3**: GLM of O on x with **gen. logit** link, Normal family

- <u>Punch line</u>: In Step 3, COP scores yield consistent $\hat{\beta}$.
- Basic ideas — If π were known: OLS yields unbiased estimator of $\begin{pmatrix} Pr\{U_i=1\}\\ \vdots\\ Pr\{U_i=J\} \end{pmatrix}$

$$> \begin{pmatrix} Pr\{U_i = 1\} \\ \vdots \\ Pr\{U_i = J\} \end{pmatrix} = \begin{pmatrix} P_1(x_i, \beta) \\ \vdots \\ P_j(x_i, \beta) \end{pmatrix}, \text{ all } i, \Rightarrow \hat{\beta}_{COP} \stackrel{p}{\rightarrow} \beta$$

 $\hat{\pi} \rightarrow \pi$ (marginalization, ML); then, uniform integrability

Simulation Study

Results

Method	Precise, m=4, n=500		Imprecise, m=4, n=1000			Imprecise, m=8, n=1000			
	$E\hat{\boldsymbol{\beta}}_{1}$	SE _{rat}	Cov	$E\hat{\boldsymbol{\beta}}_{1}$	SE _{rat}	Cov	$E\hat{\boldsymbol{\beta}}_{1}$	SE _{rat}	Cov
Modal class	0.48	1.00	0.95	0.30	0.96	0.68	0.37	1.03	0.83
Pseudo-class	0.47	0.98	0.95	0.24	0.97	0.50	0.33	1.03	0.76
Posterior-GLM	1.66	0.98	0.59	0.33	0.96	0.71	0.62	0.98	0.92
Croon corrected	0.51	NA	NA	0.49	NA	NA	0.47	NA	NA
COP score	0.51	0.97	0.95	0.51	0.98	0.96	0.49	1.00	0.94
LCR	0.51	0.99	0.95	0.52	0.98	0.96	0.49	1.02	0.95

• n=500 vs 1000, m=8: negligible difference

Power = slightly highest for LCR; others = ~ comparable except pseudo
— Relative efficiency re LCR: ≥ 0.89

Simulation Study COP Score Performance in Secondary Runs

- Findings similar in many cases:
 - 3 classes
 - $-\beta_0 \neq 0$, different β_1
 - different measurement models
 - continuous versus binary x
- Multiple (4) covariates
 - Accuracy of mean model estimation maintained
 - Accuracy of standard errors compromised

> For moderate $|\beta_1|$: coverages ~ within 0.02 of 0.95

> With large $|\beta_1|$: coverages as low as 0.83

Application

IADL Functioning in the Salisbury Eye Evaluation (SEE) Study

- Study: Salisbury Eye Evaluation (SEE; West et al. 1997)
 Representative of community-dwelling elders
 n=2520; 1/4 African American
 This talk: A convenience sample of n=1329
- **Question of interest**: Is worse vision associated with worse IADL functioning independently of age (and sex)?
 - IADL (Y): Indicators of difficulty shopping, preparing meals, doing light housework, and using the phone
 - Vision (primary X): Visual acuity (logMAR)

Application Findings

• Two class model (questionable fit)

Coefficient	Model 1		Model 2		
	LCR	СОР	LCR	СОР	
Intercept	-3.17	-3.12	-2.91	-3.02	
	(-3.61,-2.73)	(-3.51,-2.73)	(-3.44,-2.34)	(-3.47,-2.57)	
Vision	2.05	2.15	2.00	2.11	
	(1.33, 2.76)	(1.72, 2.59)	(1.21, 2.78)	(1.68, 2.55)	
Age (yr)	0.75	0.72	0.72	0.71	
	(0.21, 1.29)	(0.28, 1.17)	(0.17, 1.26)	(0.27, 0.15)	
Sex	NA	NA	-0.68 (-1.34,-0.03)	-0.17 (-0.63, 0.28)	

— Re green estimates: many other methods closer to LCR

- What I delineated
 - <u>A philosophy</u>
 - > Fit an ideal model
 - > Determine the nature of measurement achieved in fact
 - <u>Theory</u>: On the nature of measurement
 - <u>Methodology</u>: To implement the philosophy
 - <u>New work</u>: On regression with latent variable indices; on compromise between potentially competing validation criteria
- Strengths / benefits
 - Improved use / usefulness of latent variable models
 - Improved accuracy of regression using latent class scores
 - Allows some distrust of the data

- <u>A primary issue</u>: Why a hierarchical model at all?
 - PTSD: Why not DSM *Y*, delineate measurement properties?

1) Nosology

a. Central role of cond. independence, non-diff. measurement.b. Guidance in creating, say, three rather than two groups.

2) The quest for the "ideal"

a. Could have turned out that LCR much less subject to NDM, than DSM: i.e. issue with diagnostic criteria rather than items.

b. In fact: LCR and DSM about equally subject to NDM

c. Ultimate recommendation: DSM

• Beyond delineation of assumptions....

- <u>Further work</u>: Uniqueness of target
 - Delineation of plausible models
 - Displays, complicated models
 - *Implication:* Guidance on parsimony versus complexity
- <u>Further work</u>: Latent class scoring
 - Consistent inference
 - Case of differential measurement
- Further work: Big picture for validation compromise
 - How does measurement conform?
 - How should one determine the magnitude of the compromise?
- Why not be Bayesian?

Implications

- More valid usage of latent variable modeling
- Provision of more clearly interpretable scales
- Improved delineation of health statuses and inference regarding etiology